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Abstract
We discuss the statistical mechanics of a gas of gauged vortices in the
canonical formalism. At critical self-coupling, and for low temperatures, it
has been argued that the configuration space for vortex dynamics in each
topological class of the Abelian Higgs model approximately truncates to a
finite-dimensional moduli space with a Kähler structure. For the case where
the vortices live on a 2-sphere, we explain how localization formulae on the
moduli spaces can be used to compute exactly the partition function of the vortex
gas interacting with a background potential. The coefficients of this analytic
function provide geometrical data about the Kähler structures, the simplest of
which being their symplectic volume (computed previously by Manton using
an alternative argument). We use the partition function to deduce simple results
on the thermodynamics of the vortex system; in particular, the average height
on the sphere is computed and provides an interesting effective picture of the
ground state.

PACS numbers: 11.27.+d, 74.25.Bt
Mathematics Subject Classification: 53C80, 37K65

1. Introduction

One of the most challenging aspects in the study of topological solitons in gauge field theories is
to understand their interactions, even at the classical level. At critical self-coupling, where the
solitons exert no net static forces among themselves, one can typically describe the dynamical
interactions at low speed in terms of geodesic flow for certain metrics on the moduli spaces
of stable field configurations [1]. Exact results about these metrics can be obtained in some
instances, and they have provided detailed information about the classical dynamics of solitons
in this regime [2]. There is now considerable evidence on the beautiful geometrical fact that
these moduli spaces encode a whole range of physical information about the underlying
field theories, which goes well beyond the problem of approximating the slow dynamics that
brought them first into mathematical physics.
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http://dx.doi.org/10.1088/0305-4470/38/41/020
mailto:nromao@maths.adelaide.edu.au
http://stacks.iop.org/JPhysA/38/9127


9128 N M Romão

An example illustrating how physical information can be extracted from the geometry of
the moduli spaces is provided by the study of the statistical mechanics of a gas of vortices
in the Abelian Higgs model. Manton obtained the partition function in the critically coupled
(noninteracting) regime from the volumes of the moduli spaces [3]. These volumes can be
calculated once the Kähler classes of the moduli spaces are known. At first, this calculation
was performed for vortices on a sphere, but a similar argument can be used to compute the
partition function for vortices living on any compact Riemann surface [4].

In this paper, the Abelian Higgs model is modified by adding to the Lagrangian (at critical
coupling) an external potential that will probe the interactions of the vortices themselves. For
weak potentials, we expect the effect of this coupling to be well described by the addition of
a potential to the moduli space dynamics. In this setting, we calculate exactly the partition
function for the vortex gas in a background field. Clearly, the problem that we consider is
still less ambitious than the more physically interesting (but also more difficult) statistical
mechanics of vortices with Ginzburg–Landau self-interaction, but it does provide a nontrivial
extension of the study by Manton. The vortices will be allowed to live on a sphere with a
particular axis singled out, and the potential we shall focus on is natural given this geometry. To
obtain the statistical mechanics of the system, we will be making use of a localization formula
for a circle action on the moduli space of N vortices. This turns out to be an alternative route
to obtain Manton’s results (which we recover as we switch off the interaction), in particular
his formula for the volume of the moduli space of N vortices on a sphere [3].

2. Gauged vortices and their moduli spaces

Given a Riemann surface �, a gauged vortex is a pair (dA,�) consisting of a unitary connection
on a Hermitian line bundle L → � and a section of this bundle, satisfying the Bogomol’nyı̆
(or vortex) equations

∂̄A� = 0, (1)

BA = 1
2 ∗ (1 − 〈�,�〉). (2)

Here, 〈·, ·〉 is the Hermitian structure on L, and we have fixed a metric ds2
� on � with Hodge

star ∗; ∂̄A is defined from dA = d− iA =: ∂A + ∂̄A as usual through the decomposition provided
by the complex structure of �, and BA = dA is the curvature of dA. These equations are
invariant under gauge transformations

(dA,�) �→ (dA+d�, ei��), � ∈ C∞(�; R) ∼= aut(L, 〈·, ·〉).
The choice of Hermitian structure does not play an important role in our discussion, so once we
fix local trivializations for L → � we use them to pull back the standard Hermitian structure
of C.

To a configuration (dA,�), we associate the vortex number

N = 1

2π

∫
�

BA.

For the cases of interest, where � is compact or is effectively compactified by imposing suitable
boundary conditions, N ∈ Z and it corresponds to the degree of L, a topological invariant.
Since (1) states that � should be a holomorphic section, N is also the number of zeros of �,
all having positive multiplicity. In fact, solutions of (1) and (2) are completely characterized
by the zeros of �, which can be any set of N points on � (counted with multiplicity) (cf [5]),
provided that

4πN < Vol(�) (3)
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holds [6, 7]. So the space of solutions to the vortex equations modulo gauge equivalence has
the structure ∐

N∈N

MN,

where each moduli space of N-vortices MN is the Nth symmetric power of �, the smooth
2N -manifold

MN = SymN(�) := �N/SN .

Complex coordinates on this (complex) manifold are usually referred to as moduli. If z is
a local coordinate on an open set U ⊂ �, then the natural coordinates (z1, . . . , zN) on the
Cartesian product UN , denoting configurations with zeros of � at each z = zr , form an
appropriate set of moduli on SymN(U) − �, where � ⊂ MN is the locus on which at least
two zeros become coincident (and thus the SN -action fails to be free). The zr are interpreted
as positions of N individual vortex cores.

The Bogomol’nyı̆ equations above appeared for the first time in the study of the Abelian
Higgs model, a field theory for vortex dynamics defined by the functional

AHλ2(DA,�) = −1

4
‖FA‖2

L2 +
1

2
‖DA�‖2

L2 − λ2

8
‖〈�,�〉 − 1‖2

L2 (4)

depending on a self-coupling λ2 ∈ R
+. The fields A and � here depend on a time parameter

t ∈ R, and the L2 norms are taken with respect to the metric dt2 − ds2
� on R × � and the

Hermitian structure on pr∗�L; note DA = (
∂
∂t

− iAt

)
dt + dA(t) here has a time component, and

we denote its curvature by FA = d(At dt + A) =: EA ∧ dt + BA. It was observed [8] that static
configurations at critical self-coupling λ2 = 1 are minima of the energy defined by AH1 if and
only if they satisfy the first-order equations (1) and (2). The (potential) energy of a gauged
vortex with vortex number N is then πN . Since these equations are easier to study than the
second-order Euler–Lagrange equations of (4), one might hope to understand the dynamics
of the Abelian Higgs model from a study of gauged vortices, at least in the setting where
the velocities are small, so that the field configurations are well approximated at any instant
by solutions of the Bogomol’nyı̆ equations [1]. One way to describe this so-called adiabatic
approximation is as follows: construct from (4) an action on each TMN by taking the fields
to be solutions (dA(z),�(z)) of (1) and (2) with time-dependent moduli (z1(t), . . . , zN(t)),
and integrate over � in the L2 norms. It has been proven that the resulting mechanical system
does give a good description of the true (infinite-dimensional) vortex dynamics, even when
we shift slightly from critical self-coulpling [9]. Upon this process of adiabatic reduction, a
potential term in the field theory becomes a potential function for the dynamics on MN .

The approximated Abelian Higgs dynamics on the moduli space was discussed by Samols
[10] following work by Strachan [11]. It consists of geodesic motion with inertial mass π (the
static energy of one vortex) for a metric grs̄ on MN . This metric is Kähler with respect to the
complex structure on MN induced by the one on �. We call it the L2 metric on MN , since
it is obtained from the natural L2 norms (4) on the space of (covariant) derivatives of pairs
(DA,�). It is described by the closed (1, 1)-form

ω = i

2

N∑
r,s=1

grs̄ dzr ∧ dz̄s = i

2

N∑
r,s=1

(
	2(zr)δrs + 2

∂b̄s

∂zr

)
dzr ∧ dz̄s . (5)
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Here, zr are the moduli associated with a complex coordinate z for which ds2
� = 	2(z)|dz|2.

The quantities br(z1, . . . , zN) are defined as follows. One can combine (1) and (2) into a
single equation for the gauge-invariant quantity h := log〈�,�〉,

4
∂2h

∂z∂z̄
+ 	2(z)(1 − eh) = 4π

N∑
r=1

δ(z − zr), (6)

where δ is the Dirac delta-function. A solution h(z; z1, . . . , zN) to (6) has an expansion

h(z) = log|z − zr |2 + ar +
1

2
br(z − zr) + +

1

2
b̄r (z̄ − z̄r ) +

	2(zr)

4
|z − zr |2 + · · · (7)

about a simple zero zr of �. It is a remarkable fact that only the linear coefficients br in this
expansion appear in (5). It is clear that (7) only makes sense in a neighbourhood of the vortex
zr which does not contain any other vortex positions. In fact, (6) implies that we can write
[10] for each r = 1, . . . , N

br(z1, . . . , zN) =
N∑

s=1
s �=r

2

zr − zs

+ b̃r (z1, . . . , zN), (8)

where b̃r are smooth on the coincidence locus �. In an expansion about the position of a
vortex with multiplicity n � N , the logarithmic term in (7) has a prefactor n. The local moduli
zr cannot be used to describe a neighbourhood in MN of such a vortex configuration, and so
the coefficients in an expansion equivalent to (7) cannot be expressed as functions of the zr .

Samols’s formula (5) still does not give the Kähler form explicitly, since the nontrivial
quantities br are specified in terms of unknown solutions to (6). Extracting concrete
information about the moduli space metrics is still a nontrivial challenge. One may feel
that work in this direction must inevitably rely on a numerical study of equation (6); however,
analytical results have been derived in particular cases using approximations of some sort
[12, 13], integrability [11] or even a remarkable argument involving T-duality in string theory
[14]. In the following, we shall obtain further analytical information about the moduli space
metrics when � is a 2-sphere.

3. Vortex dynamics in a background potential

In this paper, we would like to extend the Abelian Higgs model to include a coupling with a
background potential, which we define to be any smooth function f : � → R. To introduce
the coupling term, we first define a vorticity 2-form v(DA,�) on � by the equation (cf [15])

(dj + FA) ∧ dt =: v ∧ dt,

where j is the gauge-invariant supercurrent 1-form on R × �

j := Im〈φ, DAφ〉.
The coupling to the potential f we propose is given by adding to the potential energy term of
the action functional (4) the interaction term

µ2
∫

�

f v (9)

where µ2 is a coupling constant.
The Euler–Lagrange equations for the modified action

AHλ2(DA,�) − µ2
∫

f v(DA,�) ∧ dt (10)
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are as follows. We obtain the same Gauß’s law as for the Abelian Higgs model (4),

d ∗ EA = 2 ∗ Im〈�,Dt� dt〉 (11)

(where Dt := ∂
∂t

− iAt ), which is to be regarded as a constraint on the space of fields
determining At . The dynamical equations are

d ∗ BA − ∗∂EA

∂t
= −∗ Im〈�, dA�〉 − µ2(〈�,�〉 + 1) df , (12)

�� = λ2

2
(〈�,�〉 − 1)� + 2iµ2 ∗ (df ∧ dA�), (13)

where � := (Dt)
2 −∗dA ∗dA is the covariant d’Alembertian on pr∗�L → R×�. As expected,

there are new terms (proportional to µ2) adding to the current in Ampère’s law (12), and also
to the potential in the nonlinear Klein–Gordon equation (13).

From our discussion in section 2, we know that solutions to the vortex equations (1) and
(2) solve the equations of motion (11) and (13) above in the static case (and setting At = 0),
provided λ2 = 1 and µ2 = 0. When the couplings are perturbed slightly away from these
critical values, we expect a slow-moving solution to have a best vortex approximation, and
that we can follow its evolution under the dynamics defined above. A detailed analysis of the
case λ2  1, µ2 = 0, has been carried out by Stuart in [9], where distances to best vortex
approximations were estimated (in terms of λ2 −1 and initial errors) after finite-time evolution,
and shown to be controlled for evolution times of order O(|λ2 − 1|−1/2). In this paper, we
make the natural assumption that an analogous result holds for λ2 = 1 and µ2  0. This
assumption can be regarded as a motivation to the study of the dynamics on the moduli space
of gauged vortices with a certain (and rather natural) background potential.

The coupling (9) satisfies a number of desirable properties. One of them is that, if we
take f to be a constant, it reduces to a constant potential on the moduli space. To see this, we
use (1) and (2) to rewrite [15]

v = −i〈dA�, dA�〉 + (1 − 〈�,�〉)BA

= −i〈∂A�, ∂A�〉 + 2(∗BA)BA,

which is precisely twice the energy density for solutions of the Bogomol’nyı̆ equations at
critical self-coupling. Thus,∫

�

v|MN
= 2πN.

Note that df = 0 in this situation, so the terms proportional to µ2 in the field equations (12)
and (13) vanish. This is a rather degenerate case of our model (10), but the fact that the
adiabatic approximation leads to sensible results at this level is already reassuring.

For the rest of the paper, we shall restrict ourselves to vortices living on a 2-sphere of
radius R,� = S2

R . In this context, we shall illustrate another natural property of the interaction
term (9) in section 4.1.

4. Localization and the partition function

The exact results we want to derive refer to the case � = S2
R , on which z shall denote a

stereographic coordinate. The metric on S2
R has Kähler (volume) form

ωS2
R

= 2iR2

(1 + |z|2)2
dz ∧ dz̄ (14)
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and the constraint (3) reads

R2 > N.

The moduli spaces in this case are

MN = SymN
(
S2

R

) ∼= CP
N, (15)

equipped with the Kähler structures

ω = i
N∑

r,s=1

(
R2δrs

(1 + |zr |2)2
+

∂b̄s

∂zr

)
dzr ∧ dz̄s . (16)

One way to understand (15) is as follows. Let Vj ⊂ MN be the locus where precisely j vortices
are at z = ∞. Then Vj is parametrized by the (unordered) positions of the remaining N − j

vortices on C, which are unambiguously specified by the coefficients of a monic polynomial
of degree N − j having these positions as roots. Hence, Vj

∼= C
N−j . The way in which these

2(N − j) cells are glued together in MN is determined by attaching maps corresponding to
letting one vortex go to z = ∞ at a time. This yields precisely the description of CP

N as a
CW-complex.

4.1. Rotational symmetry

For most of our discussion, we shall restrict our attention to the potential

f = R2 1 − |z|2
1 + |z|2 . (17)

This potential is very natural if we assume that there is a special axis on the sphere. In fact,
(17) is the simplest nontrivial circularly symmetric function on S2

R , in the sense that other
potentials with circular symmetry can be expanded as power series in f .

It is easy to check that (17) is a Hamiltonian for the circle action of rotations around the
axis of S2

R associated with the stereographic coordinate z,

ιi(z ∂
∂z

−z̄ ∂
∂z̄

)ωS2
R

= −df.

There is an induced circle action on MN = SymN
(
S2

R

)
with generator

ξ = i
N∑

r=1

(
zr

∂

∂zr

− z̄r

∂

∂z̄r

)
(18)

which extends to a smooth vector field on MN . Rotational symmetry on S2
R implies [16]

N∑
r=1

(zrbr − z̄r b̄r ) = 0, (19)

and one can use this equality to show that the Kähler structure (16) is preserved by the
one-parameter group generated by (18). Since ω is closed, it follows from

0 = Lξω = ιξ (dω) + d(ιξω) = d(ιξω)

and H 1(CP
N) = 0 that there is also a Hamiltonian for the circle action on MN , which can be

computed to be

J = 2π

N∑
r=1

(
R2 1 − |zr |2

1 + |zr |2 − (zrbr + 1)

)
. (20)
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Note that this formula assumes that all the vortices are separated, but it does extend to a smooth
function on the whole of MN .

Hamiltonians of circle actions are defined up to a constant. However, this constant is
fixed if the circle involved is a one-parameter subgroup of a Lie group with discrete centre and
Hamiltonian action on the symplectic manifold, and we demand that the Hamiltonian should
be a component of the corresponding moment map. In our case, the circle action extends to
a Hamiltonian action of Iso

(
S2

R

) = SO(3) on MN . The choice of constants in (20) can be
checked [16] to be consistent with the moment map MN → so(3)∗. The same can be said of
f in (17) in relation to the symplectic structure ωS2

R
in (14).

A natural question to ask at this point is whether our coupling behaves well with respect to
moment maps. We can regard the adiabatic reduction of couplings of the form (9) as defining
a linear map between Lie algebras

R : C∞(
S2

R, ωS2
R

) −→ C∞(MN, ω)

f �−→ ∫
S2

R
f v

(21)

for each N (where the Lie bracket on each side is the Poisson bracket defined by the symplectic
structure). One may hope that this map preserves the Lie algebra structures, and that it relates
corresponding components of the SO(3)-moment maps on each of S2

R and MN . The following
proposition shows that this is indeed the case.

Proposition 4.1. For each N < R2, there is a commutative diagram of Lie algebras

C∞(
S2

R

)
↗

so(3)


R
↘

C∞(MN)

where the diagonal arrows denote the dual maps to the moment maps S2
R → so(3)∗ and

MN → so(3)∗, respectively.

Proof. The existence of the moment maps is guaranteed by the vanishing of the Lie algebra
cohomology group H 2(so(3); R), a consequence of simplicity [17].

Given the linearity of R in (21), the proposition will follow if we check the commutativity
of the diagram on the generators of so(3).

We start by sketching how to obtain

J = R(f ), (22)

where f is given by (17). This calculation is paradigmatic of the process of reduction to the
moduli space. Suppose that the vortices are all separated, and work first on the subset

Cε :=
{
z ∈ C : |z| <

1

ε

}
−

N⋃
r=1

Bε(zr) ⊂ S2
R,

where ε is taken small enough. Then (6) can be used to write on Cε

v = i

2R2
d

(
(1 + |z|2)2 ∂2h

∂z∂z̄
(∂̄ − ∂)h

)
and

f v = i

2R2
d

(
∂

∂z
(1 − |z|4) ∂

∂z

(
∂h

∂z̄

)2

+
∂

∂z
(1 + |z|2)2

(
∂h

∂z̄

)2
)

∧ dz̄.
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Using Stokes’ theorem and the estimates

∂2h

∂z∂z̄
= − R2

(1 + |zr |2)2
+ o(ε),

∂h

∂z̄
= 1

ε
ei arg(z−zr ) +

b̄r

2
+ o(1) as ε → 0

for z ∈ ∂Bε(zr), which follow from (7), we do obtain (22) after taking ε → 0.
To proceed, we can either repeat the calculation for the other generators (as in [16]),

keeping track of the constants to preserve the so(3) algebra, or change integration variables
and apply the appropriate rotations to the two sides of (22). The second procedure becomes
straightforward once we observe that the br transform as [4]

(T ∗br)(z1, . . . zN) = 1

T ′(zr)
br(z1, . . . , zN) − T ′′(zr)

T ′(zr)2

under any holomorphic T ∈ Iso(�). This equation is readily obtained from the expansion (7).
�

It should be noted thatR does not preserve the structures of C∞(
S2

R, ωS2
R

)
and C∞(MN, ω)

as Poisson algebras.
Since the moduli spaces are compact in our case, the circle actions we are interested in

must have fixed points (the zeros of ξ ). It is easy to see that these are exactly the N + 1 points
pj ∈ MN (with j = 0, 1, . . . , N) describing configurations of j vortices at z = 0 and N − j

vortices at z = ∞, which will be fixed by a rotation of all the vortices around the axis through
0 and ∞. We remark that J is a Morse function on MN , with critical set

Crit(J ) = {p0, p1, . . . , pN }.
In the next section, it will be useful to understand the circle action in the neighbourhood of

the fixed points. On each tangent space Tpj
MN

∼= C
N , the action linearizes to a complex N-

dimensional representation of the circle group; this in turn decomposes into N one-dimensional
representations of U(1), and each of them is uniquely specified by its weight k ∈ Z:

e2π it : ζ �→ e2π ikt ζ, t ∈ R, ζ ∈ C.

Thus to each of the fixed points pj we can associate N weights kj,�, 1 � � � N , well defined
up to order. The product of the weights at each fixed point

e(pj ) :=
N∏

�=1

kj,� (23)

is a local invariant of the circle action: it does not depend on the choice of coordinates on the
moduli space. We shall make use of the following result:

Lemma 4.2. For the circle action generated by (20) on (MN, ω),

e(pj ) = (−1)j+Nj !(N − j)!, 0 � j � N.

Proof. In terms of the moduli zr , the circle action is simply given by

e2π it : zr �→ e2π it zr , t ∈ R. (24)

However, all the pj except p0 lie in �, where the coordinate system defined by the zr becomes
singular, and so we must introduce other coordinates to compute the weights. We fix j and
arrange the vortex labels such that vortices 1, . . . , j are at z = 0, and vortices j + 1, . . . , N

are at z = ∞. (We are allowed to do this since the vortices in each cluster are to be thought of
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as interchangeable, but vortices belonging to different clusters have separate identities.) Now
we introduce

uj,r := s
[j ]
r (z1, . . . , zj ), 1 � r � j,

vj,r := s
[N−j ]
r

(
z−1
j+1, . . . , z

−1
N

)
, 1 � r � N − j,

where s
[j ]
r denotes the rth elementary symmetric polynomial in j variables,

s[j ]
r (t1, . . . , tj ) :=

∑
i1<···<ir

ti1 · · · tir .

Clearly, {uj,1, . . . , uj,j , vj,1, . . . , vj,N−j } is a centred local coordinate system at pj ∈ MN ,
and we can also use it as a coordinate system on Tpj

MN . From (24), we find that the
linearization of the circle action is described by

uj,r �→ e2π irtuj,r vj,r �→ e2π i(−r)t vj,r

and therefore we obtain in (4.2)

e(pj ) =
(

j∏
k=1

k

)(
N−j∏
�=1

(−�)

)
= (−1)j+Nj !(N − j)!.

�

4.2. The partition function

The dynamics on the moduli space of N vortices is defined by the Lagrangian

L = π

2

N∑
r,s=1

grs̄(z1, . . . , zN)żr ˙̄zs − µ2J (z1, . . . , zN),

where grs̄ are the coefficients of the metric on MN and π is the mass of a single vortex. In the
canonical picture, we describe the dynamics as a Hamiltonian system on the 4N -dimensional
manifold T ∗MN equipped with its canonical symplectic structure

ωcan = 1

2

N∑
r=1

(dzr ∧ dw̄r + dz̄r ∧ dwr).

Here, wr are complex coordinates for the fibres of T ∗MN → MN , conjugate to the moduli
zr :

wr = ∂L

∂żr

= π

N∑
s=1

grs̄ ˙̄zs.

The dynamics is generated by the Hamiltonian

H = 1

2π

N∑
r,s=1

grs̄(z1, . . . , zN)wrw̄s + µ2J (z1, . . . , zN),

where grs̄ denote the entries of the inverse to the matrix of coefficients of the metric.
According to the canonical formalism for classical statistical mechanics, the partition

function of the vortex moduli space dynamics is given by the Gibbs formula

Z = 1

(2πh̄)2N

∫
T ∗MN

exp(−H(z1, . . . , zN ,w1, . . . , wN)/T )
ω2N

can

(2N)!
. (25)

The prefactor to the integral is Planck’s constant 2πh̄ raised to the power 1
2 dimR T ∗MN = 2N,

and T is the temperature. We are normalizing Boltzmann’s constant to unity.
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In parallel with the calculation in [3], we find that the integral (25) factorizes as a product
of a Gaussian integral along the fibres, which can be readily calculated, and an integral over
the moduli space with the Liouville measure associated with (16)

Z =
(

T

2h̄2

)N ∫
MN

exp(−µ2J (z1, . . . , zN)/T )
ωN

N !
. (26)

The integral remaining still looks very complicated, but we shall show that it can also be
computed exactly, using localization in symplectic geometry. The main tool we will use is the
following version of a famous result by Duistermaat and Heckman [18]:

Theorem 4.3 (Duistermaat–Heckman formula). Let (M,ω) be a (2n)-dimensional compact
symplectic manifold with a Hamiltonian circle action generated by a Morse function
K : M → R. Then,∫

M

eτK ωn

n!
=

∑
p∈Crit(K)

eτK(p)

τ ne(p)
, (27)

where e(p) denotes the product of the weights of the linearized action at the critical point p
and τ is a formal parameter.

A streamlined proof of this theorem can be found in section 5.6 of reference [19].
In our context, taking M = MN,K = J and τ = −µ2/T , and making use of

lemma 4.2, the equality (27) takes the form∫
MN

e−µ2J/T ωN

N !
=

N∑
j=0

(−1)j
T Nexp(−µ2J (pj )/T )

µ2Nj !(N − j)!
. (28)

Hence, to compute the integral in (26), we only need to evaluate the potential J at the critical
points pj ∈ MN .

We shall make use of the spherical symmetry of the problem to determine the contribution
of the b̃r terms in formula (20) to J (pj ). Suppose that the Higgs field � has a zero at z = y

of order j and a zero at z = − 1
ȳ

of order N − j , a vortex configuration corresponding to a
point of MN that we shall denote by pj (y). Then h = log〈�,�〉 must satisfy

∂2h

∂z∂z̄
− R2(eh − 1)

(1 + |z|2)2
= jπδ(z − y) + (N − j)πδ

(
z − 1

ȳ

)
. (29)

This equation leads to the following expansions for h:

h(z, y) = j log|z − y|2 + a+(y) + 1
2b+(y)(z − y) + 1

2b+(y)(z̄ − ȳ) + · · ·
around z = y, and

h(z, y) = (N − j) log

∣∣∣∣z +
1

ȳ

∣∣∣∣
2

+ a−(y) +
1

2
b−(y)

(
z +

1

ȳ

)
+

1

2
b−(y)

(
z̄ +

1

y

)
+ · · ·

around z = − 1
ȳ

. We need to calculate b±(y). Extending an argument in [3], we explore the
fact that h(z, y) must be a function of the spherical (and thus also of the chordal) distance
between the points of coordinates z and y on S2

R . The square of the chordal distance is given
by

4R2|z − y|2
(1 + |z|2)(1 + |y|2) ,

and so h can be expanded as

h(z, y) = j log
|z − y|2

(1 + |z|2)(1 + |y|2) + c+ + d+
|z − y|2

(1 + |z|2)(1 + |y|2) + · · · . (30)
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For y = 0, this yields

h(z, 0) = j log|z|2 + c+ + (d+ − j)|z|2 + · · · ;
substituting this into (29) with y = 0 and small z, and looking at the zeroth-order term in |z|2,
we conclude that

d+ = j − R2.

Now taking y arbitrary, we rearrange (30) as

h(z, y)=j log|z − y|2 + c+ − 2j log(1 + |y|2) − j ȳ

1 + |y|2 (z − y) − jy

1 + |y|2 (z̄ − ȳ)

+
j ȳ2

(1 + |y|2)2
(z − y)2 +

jy2

(1 + |y|2)2
(z̄ − ȳ)2 − R2

(1 + |y|2)2
|z − y|2 + · · ·

to read off

b+(y) = − 2j ȳ

1 + |y|2 . (31)

We proceed similarly for b−(y): writing

h(z, y) = (N − j) log

∣∣z + 1
ȳ

∣∣2

(1 + |z|2)(1 + 1
|y|2

)2 + c− + d−

∣∣z + 1
ȳ

∣∣2

(1 + |z|2)(1 + 1
|y|2

)2 + · · · (32)

we can calculate

c− = N − j − R2

by taking y = ∞, substituting into (29) and looking at the zeroth term in the large |z|2
expansion; then rearrange (32) as

h(z, y) = (N − j) log

∣∣∣∣z +
1

ȳ

∣∣∣∣
2

− 2(N − j) log
1 + |y|2

|y| + c− +
(N − j)ȳ

1 + |y|2
(

z +
1

ȳ

)

+
(N − j)y

1 + |y|2
(

z̄ +
1

y

)
+

(N − j)ȳ2

(1 + |y|2)2

(
z +

1

ȳ

)2

+
(N − j)y2

(1 + |y|2)2

(
z̄ +

1

y

)2

− R2|y|2
(1 + |y|2)2

∣∣∣∣z +
1

ȳ

∣∣∣∣
2

+ · · ·

and read off

b−(y) = 2(N − j)ȳ

1 + |y|2 . (33)

To proceed, we must interpret formula (20) carefully to deal with vortex clusters such
as the configurations pj (y) ∈ MN . When any number of vortices become coincident, the
smooth part b̃r of their individual br coefficients tends to the linear coefficient in the cluster
expansion of h about the position of the cluster, but the singularities in (8) must be treated
with some care. Although these singular parts diverge separately, they always yield a finite
contribution in a SN -invariant linear combination over the individual vortices—for example,
they cancel mutually in a term like

∑N
r=1 br . In (20), these singular parts are multiplied by the

vortex positions, and so in the clustering (z1, . . . , zN) → pj (y) they give a contribution
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−2π

N∑
r=1

zr

∑
s �=r

same cluster

2

zr − zs

= −4π

j∑
r=1

∑
s �=r

zr

zr − zs

− 4π

N∑
r=j+1

∑
s �=r

zr

zr − zs

= −4π


 j∑

r=1

∑
s<r

+
N∑

r=j+1

∑
s<r


 (

zr

zr − zs

+
zs

zs − zr

)

= −4π


 j∑

r=1

∑
s<r

+
N∑

r=j+1

∑
s<r


 1

= −4π

(
j (j − 1)

2
+

(N − j)(N − j − 1)

2

)
= −2π((N − j)2 + j 2 − N) (34)

to J (pj (y)). The remaining part of J (pj (y)) is

2π

N∑
r=1

(
R2 1 − |zr |2

1 + |zr |2 − (zr b̃r + 1)

)
= 2πR2

(
j

1 − |y|2
1 + |y|2 + (N − j)

1 − 1
|y|2

1 + 1
|y|2

)

− 2π

(
j (yb+(y) + 1) + (N − j)

((
− 1

ȳ

)
b−(y) + 1

))

= 2π(2j − N)(R2 − N)
1 − |y|2
1 + |y|2 + 2π((N − j)2 + j 2 − N), (35)

where we used (31) and (33). Adding (34) and (35), we obtain

J (pj (y)) = 2π(R2 − N)(2j − N)
1 − |y|2
1 + |y|2

and hence

J (pj ) = J (pj (0)) = 2π(R2 − N)(2j − N), 0 � j � N. (36)

Inserting (36) in (28), we find∫
MN

e−µ2J/T ωN

N !
=

N∑
j=0

(−1)j
T Nexp(−2πµ2(R2 − N)(2j − N)/T )

µ2Nj !(N − j)!
. (37)

This equation can be interpreted as an equality in the formal power series ring R
[[

µ2

T

]]
, which

is equivalent to an infinite number of identities over the reals. The first N nontrivial identities
are

N∑
j=0

(−1)j

j !(N − j)!
(2j − N)k = 0, 0 � k � N − 1, (38)

and they must be true for consistency. But they are implied by the following technical lemma.

Lemma 4.4. For all N ∈ N,

N∑
j=0

(−1)j

N !

(
N

j

) (
N

2
− j

)k

=
{

0 if 0 � k � N − 1,

1 if k = N.

Proof. We start from the equality(
x

d

dx

)�

(1 − x)N =
N∑

j=0

(−1)j
(

N

j

)
j�xj , � ∈ N ∪ {0},
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obtained by successively acting on the binomial expansion with the Euler operator x d
dx

. Setting
x = 1 yields

N∑
j=0

(−1)j
(

N

j

)
j� =

(
x

d

dx

)�

(1 − x)N

∣∣∣∣∣
x=1

.

We use this to write
N∑

j=0

(−1)j
(

N

j

) (
N

2
− j

)k

=
N∑

j=0

k∑
�=0

(−1)j+�

(
N

j

)(
k

�

) (
N

2

)k−�

j �

=
N∑

�=0

(−1)�
(

k

�

)(
N

2

)k−� N∑
j=0

(−1)j
(

N

j

)
j�

=
N∑

�=0

(−1)�
(

k

�

)(
N

2

)k−� (
x

d

dx

)�

(1 − x)N

∣∣∣∣∣
x=1

=
(

N

2
− x

d

dx

)k

(1 − x)N

∣∣∣∣∣
x=1

. (39)

It is clear that (39) is zero whenever 0 � k < N , since the differential operator
(

N
2 − x d

dx

)k

will not annihilate enough (1 − x) factors before x → 1. However, if k = N one obtains(
N

2
− x

d

dx

)N

(1 − x)N

∣∣∣∣∣
x=1

= (−1)N
(

x
d

dx

)N

(1 − x)N

∣∣∣∣∣
x=1

= (−1)NxN

(
d

dx

)N

(1 − x)N

∣∣∣∣∣
x=1

= N !

making use of
[

d
dx

, x
] = 1. �

Note that lemma 4.4 yields yet another identity from (37):

Vol(MN) :=
∫
MN

ωN

N !
= (4π)N(R2 − N)N

N !

N∑
j=0

(−1)j

j !(N − j)!

(
N

2
− j

)N

= (4π)N(R2 − N)N

N !
. (40)

This is precisely the formula found by Manton for the volume of the vortex moduli space in
[3], using a more direct argument involving the cohomology of CP

N . Equation (40) provides
a nontrivial check of our calculations.

Beyond the identities (38) and formula (40) for Vol(MN), our localization argument
yields an infinite number of integrals over the moduli space: for m ∈ N∫

MN

J (z1, . . . , zN)m
ωN

N !
=

N∑
j=0

(−1)N−jm!

j !(N − j)!(N + m)!
(2π(R2 − N)(2j − N))N+m. (41)

Note that both sides of this equation vanish when m is odd: the left-hand side from reflection
symmetry on S2

R and proposition 4.1, and the right-hand side from
N∑

j=0

(−1)j

j !(N − j)!

(
N

2
− j

)N+2n−1

= 0, ∀ n ∈ N,
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which follows from substituting j by N − j into the sum. For m even, (41) yields new
quantitative information about the metric on MN . We note in passing that even the vanishing
integrals (m odd) have interesting content. For example, using the result for m = 1, we find
from (20) that ∫

MN

N∑
r=1

zrbr(z1, . . . , zN)
ωN

N !
= −Vol(MN);

a similar argument for rotations around z = 1 and z = i yields∫
MN

N∑
r=1

br(z1, . . . , zN)
ωN

N !
= 0,

which in turn also leads to∫
MN

N∑
r=1

z2
r br (z1, . . . , zN)

ωN

N !
= 0

by a property of the functions br analogous to (19) [16]:
N∑

r=1

(
2zr + z2

r br + b̄r

) = 0.

Using the result (41), together with (40), we can obtain the integral over MN of any power
series in J . Such power series, when convergent, give analytic functions on MN which are
invariant under the circle action generated by (18).

Finally, we can use (37) to compute the partition function (26) of the vortex gas in the
background field (17) to be

Z =
(

T 2

2h̄2µ2

)N

exp(2πµ2N(R2 − N)/T )

N∑
j=0

(−1)j

j !(N − j)!
exp(−4πµ2(R2 − N)j/T )

= 1

N !

(
T 2

2h̄2µ2

)N

exp(2πµ2N(R2 − N)/T )(1 − exp(−4πµ2(R2 − N)/T ))N (42)

= 1

N !

(
T

h̄µ

)2N

sinhN

(
2πµ2(R2 − N)

T

)
.

5. Thermodynamics of the vortex gas

The Helmholtz free energy of the vortex system can be computed from (42) as

F = −T log Z  −NT

(
log sinh

µ2(A − 4πN)

2T
− log N + 2 log

√
eT

h̄µ

)
,

where we made use of Stirling’s approximation ln N !  N ln N − N , and we introduced the
area of S2

R,A = 4πR2. The entropy is given by

S = −∂F

∂T
= N

(
log sinh

µ2(A−4πN)

2T
+log

e3T 2

h̄2µ2N
− µ2(A−4πN)

2T
coth

µ2(A−4πN)

2T

)
.

Both these quantities turn out to be nonextensive, due to a nonlinear effect produced by the
interaction with the external potential.

The interaction is controlled by the coupling µ2; at small coupling, keeping A and
N finite, we can approximate the hyperbolic functions to first order as sinh χ  χ and
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coth χ  1
χ

, leading to the same results found by Manton in the absence of interaction [3].
In this noninteracting setting, both F and S become extensive in the thermodynamical limit of
A → ∞, N → ∞ and constant density n = N

A
. The pressure P = − ∂F

∂A
of the system in this

regime can be readily computed and yields the equation of state [3]

P(A − 4πN) = NT. (43)

This is a particular limit of the van der Waals equation, known as a Clausius equation of
state. It holds more generally on any compact Riemann surface [4]. The fact that the factor
A − 4πN appears in (43) can be interpreted as an interaction among the vortices [3]: each
vortex effectively occupies an area of 4π (consistently with (3)), hence N coexisting vortices
have an area available for their motion which is a reduction of the area A of the sphere by
N × 4π . The virial coefficients associated with (43) are found to be all constant and equal to
powers of 4π :

PA = NT

∞∑
�=0

(4π)�n�; (44)

this virial expansion is reminiscent of the one for a gas of hard particles of finite size in a
one-dimensional box [2]. Thus, one might be tempted to think of the vortices in effective
terms as rigid discs of area 4π moving on the surface. But this picture already fails at first
order in the expansion (44): the gas of hard discs would have first virial coefficient 8π [20],
which is twice the coefficient of n in the power series in (44). In fact, a crucial difference
between the gas of vortices and a gas of hard discs is that the shapes of the regions where the
vortex density is concentrated become very different in the two cases whenever two or more
particles come close together, and we expect the equation of state to be extremely sensitive to
this.

Now we shall consider the statistical mechanics of the interacting regime (µ2 �= 0).
From our partition function (42), we can compute the thermodynamic average value of the
observable J ∈ C∞(MN) given by (20):

〈J 〉 = 1

Z

∫
T ∗MN

J e−H/T ω2N
can

(2N)!

= −T
∂

∂µ2
log Z

= −NT

(
A − 4πN

2T
coth

µ2(A − 4πN)

2T
− 1

µ2

)
. (45)

Recall that J is related to the height function on the sphere x3 := R
1−|z|2
1+|z|2 ∈ C∞(

S2
R

)
by

J = R(Rx3) (cf (22)). Thus, we propose to interpret the quantity J/(2πNR) as an observable
giving the height on S2

R of configurations of N vortices, and we shall denote it by x̃3. We find

〈x̃3〉 = 〈J 〉
2πNR

= −
(

1 − N

R2

)
R

(
coth χ − 1

χ

)
, (46)

where

χ := µ2(A − 4πN)

2T
. (47)

The dependence of the average height on the parameter χ is plotted in figure 1.
To interpret the meaning of (46), consider a simple model where the vortex density is

supported and homogeneously distributed on a spherical disc of area 4πN and centred at the
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-0.8

-0.6

-0.4

-0.2

〈x̃3〉/(1 − N
R2 )R

χ

Figure 1. The thermodynamic average 〈x̃3〉 of the height observable in the gas of N vortices as a
function of the parameter χ .

minimum z = ∞ of the potential (17). The height xmax
3 of the points at the boundary of this

disc is computed as

2πR

∫ xmax
3

−R

dx3 = 4πN ⇒ xmax
3 = −R +

2N

R
,

where we made use of Archimedes’ hat-box theorem. In this model, the average height for
the vortex density is then given by

〈x3〉model :=
∫ xmax

3
−R

x3 dx3∫ xmax
3

−R
dx3

= −
(

1 − N

R2

)
R. (48)

Thus, we find that

lim
χ→∞〈x̃3〉 = 〈x3〉model.

In other words, the effective shape of an N-vortex distorts to a spherical disc (of area 4πN and
centred at the minimum of the potential z = ∞) as χ becomes large. This limit is typically
achieved if the area A − 4πN available for the dynamics is large, the coupling µ2 is large
or the absolute temperature T is low—cf (47). Note that in the picture where each vortex is
approximated by a rigid disc of area 4π , the average height of the density distribution would
be higher than (48). The picture of the N-vortex as a disc of constant density (localized at the
bottom of the potential) provides a good description of the ground state of the system.

To describe a circularly symmetric distribution of vortices on the sphere, it is natural to
introduce a vortex density function ρ : [−R,R] → R, defined on the interval of heights on
S2

R and normalized as
∫ R

−R
ρ dx3 = 1. This function has parameters A, T and N, and it could

in principle be reconstructed as a Fourier–Legendre series from the partition function (42) if
we could compute the reduction to the moduli space of all the powers of the height, R(f m)

for m ∈ N. We can write∫ R

−R

x3ρ(x3) dx3 := 〈x̃3〉 = 〈J 〉
2πNR

,

which gives just the first Fourier–Legendre coefficient. The difference in pressure �P between
the highest and the lowest points of the gas on the sphere depends only on the trivial zeroth-
order coefficient: using the relation

∇P + Nρ∇f = 0
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for the pressure of a fluid of N particles subject to a potential f at equilibrium (this is analogous
to the problem of fluid motion in a constant gravitational field, cf [21] § 25), we find

�P =
∫ R

−R

∇P dx3 = −
∫ R

−R

Nρ(x3)
∂

∂x3
(µ2Rx3) dx3 = −µ2NR < 0.

6. Discussion

We have been able to calculate the partition function of a gas of critically coupled Abelian
Higgs vortices interacting with an axially symmetric background potential on a sphere. When
we switch off the interaction, we recover Manton’s partition function that gives physical
insight on the Liouville volume of vortex moduli spaces MN . Our study yields, in addition
to Manton’s formula (40) for Vol(MN), an infinite number of nontrivial integrals (41) over
MN . These are additional data about the geometry of the moduli spaces, and they are all
encapsulated by our partition function. As an application, we computed the thermodynamic
average height of the gas of N vortices, and the result we found is consistent with the effective
picture of the ground state as an N-vortex localized at the bottom of the potential as a spherical
disc of constant density and area 4πN .

Our analysis was essentially an application of the Duistermaat–Heckman localization
formula for a natural circle action on (MN, ω), in which the symplectic structure of the
moduli space is a crucial ingredient. There is an alternative model [22] for the dynamics of
Ginzburg–Landau vortices with a Schrödinger–Chern–Simons kinetic term, for which MN

(not T ∗MN ) plays the role of phase space in the adiabatic approximation; in this context, the
Kähler form ω appears naturally as a symplectic structure [16]. Our work illustrates that the
symplectic point of view can also be fruitful in the study of the Abelian Higgs model.

We have already noted that our formula (41) can be applied to calculate integrals of general
circularly symmetric functions on the moduli space. One may therefore hope to study the
interaction of the vortices with any symmetric potential f on S2

R—or perhaps even an SO(3)-
invariant intervortex interaction modelling the Ginzburg–Landau potential at λ2 �= 1 to some
degree of approximation, which would be an obviously interesting extension of our work [23].
Analytical results about the Ginzburg–Landau potential (for arbitrary N) are already available
[24, 25], but they refer to the situation where the vortices are well separated on the plane. A
treatment of the interaction to include the interesting effects near clustering configurations on
the moduli spaces will almost certainly need to use some numerical input [26]. It is believed
that Abelian Higgs vortices even slightly away from critical coupling should satisfy a realistic
equation of state such as the van der Waals equation, which accounts for phase transitions.
Progress in this direction would shed light on the phenomenology of thin superconductors.
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